If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3y^2+1=7
We move all terms to the left:
1/3y^2+1-(7)=0
Domain of the equation: 3y^2!=0We add all the numbers together, and all the variables
y^2!=0/3
y^2!=√0
y!=0
y∈R
1/3y^2-6=0
We multiply all the terms by the denominator
-6*3y^2+1=0
Wy multiply elements
-18y^2+1=0
a = -18; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-18)·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-18}=\frac{0-6\sqrt{2}}{-36} =-\frac{6\sqrt{2}}{-36} =-\frac{\sqrt{2}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-18}=\frac{0+6\sqrt{2}}{-36} =\frac{6\sqrt{2}}{-36} =\frac{\sqrt{2}}{-6} $
| 10x-32=142 | | 2x^2+8x-15=9x | | -3x+10=5x-(-8) | | 118-65x-123=5x+35-20x | | 2x-5(x-2)=-4+5x-50 | | 7/10x+2=10 | | 4(-x+3)=4x+12 | | 6s+18=s+2 | | (2x-9)/(3x+8)=0 | | 36=1.2x+15.6 | | 196=x²+144 | | (2x-9)/(3x+18)=0 | | 0.27x=2.7945 | | 45x^2-500=0 | | 6s+18=5+2 | | 1/3(x+3)=-9 | | 6s-18=5+2 | | 12+6x=30-x | | (2x^2-1)=97 | | 10x2-9x+6=0 | | 9x+40=4x-15 | | 0.03y(4000-y)-9y=0 | | 13-3(4x+6)=-3-12x-2 | | 5x=-4x^2-6 | | (1.8/16.7)*100=x | | 5x2+50x=-125 | | (-2y+7)^2+4y^2=25 | | 4x2+7x-15=0 | | 28x/35=5x-10/35 | | 8d^2+15+26d=0 | | (-2y+7)^2=0 | | 15x+63+87=180 |